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Functional Bases of Phonological Universals:
A Connectionist Approach

Marc F. Joanisse and Mark S. Seidenberg
University of Southern Californial

1 Introduction

The phonological inventories of the world’s languages exhibit non-random patterns
relating to how phonemes are grouped into natural classes, the types of processes
targeting these classes, the direction of historical change, and the frequency with
which phonemes occur and co-occur in languages. The present study investigated
an important class of regularities concerning the distributions of vowels. Although
the human vocal apparatus can produce many possible vowels, a large proportion
of languages only use between 4 and 8 of them. In addition, languages with a
given number of vowels tend to use similar sets of vowels. For example, most five-
vowel languages employ the set [i e a o u]; a handful use similar inventories such
as [i e a o u]; and many possible sets of vowels are not observed at all, such as
[ey e 2 u]?.

The standard approach within the generative tradition has been to view these
phenomena in terms of the concept of markedness: vowel features are organized
into a markedness hierarchy, such that vowels incorporating more marked features
are less suitable in an inventory (Chomsky & Halle 1968; Clements 1985). The ma-
jor drawback to this approach is the lack of criteria independent of mere frequency
of occurrence for determining which vowels or features are “marked.”

Our research addresses the hypothesis that vowel inventory patterns reflect func-
tional constraints related to perception and production; specifically, languages tend
to maximize distances between vowels. We focus here on the tendency to maxi-
mize the acoustic distances between constituent vowels, although featural or gestu-
ral distance may also be relevant. Inventories involving acoustically well-dispersed
vowels are easier to both acquire and process because they are easier to discrimi-
nate, creating a tendency for languages to recruit such inventories. In contrast, less
acoustically dispersed vowel inventories are more difficult to acquire and process
because of the greater probability of misperceiving a constituent vowel, leading to
languages shifting away from such inventories. On this view, inventories such as
[i I e € a] do not occur because they involve smaller distances than other, attested
vowel sets (Jakobson 1941).

A similar idea has been explored using mathematical models (Liljencrants &
Lindblom 1972; Lindblom 1986; Bog, Schwartz, & Valée 1994) in which the acous-



tic distances of vowels are expressed as a function of the Euclidean distance be-
tween their corresponding formant frequencies. Such models predict perceptually
optimal inventories by maximizing the distances between all vowels in a given set.
Although this approach can account for a considerable amount of data about the
distributions of vowels, it is limited in several respects. First, it does not represent
the variability with which vowels are produced; as we shall see, this variability can
play a role in the frequency with which a vowel occurs in an inventory. Second,
this approach is not a model of why this type of distance maximization occurs;
we tie this optimization to constraints related to learning and processing. Finally,
this approach does not easily allow the integration of other types of factors used to
differentiate vowels, such as nasalization, diphthongization and vowel length.

Connectionist Models of Phoneme Acquisition

The present work builds on Lindblom’s approach by situating it in a theory of how
phonemic inventories are acquired and processed. In Joanisse & Seidenberg (1997)
we described research in which connectionist models are trained to recognize the
phonemes of pseudo-languages consisting of different vowel inventories. The ap-
proach is based on the premise that, like humans, connectionist models are not
equally predisposed to learning and recognizing all types of patterns. By varying
the characteristics of these vowel inventories and assessing the models’ capacities
to learn them, we generate predictions about the relative suitability of inventories.
Inventories that are easier to learn are predicted to be more likely to occur in the
languages of the world. Inventories that cannot be learned are predicted to not oc-
cur.

The general structure of the models used in the present research is illustrated in
Figure 1. The ellipses represent groups of artificial neurons that encode information
as patterns of activation. Lines between layers of units represent sets of connections
through which activation is passed, in the direction of the arrows. The middle, so-
called hidden, layer of units is used to enhance the representational capacity of the
network?.

The model is trained to recognize speech sounds based on a set of examples. The
input to the model is the spectrographic representation of a given speech item. Iden-
tification results from passing activation through two layers of connections to the
output layer. Learning proceeds through the adjustment of connection weights us-
ing the backpropagation learning algorithm (Rumelhart, Hinton, & Williams 1986);
over the course of training, the model adjusts these weights in ways that facilitate
accurate identification of the training stimuli and generalization to novel examples.
The relative difficulty of learning the training set is reflected in the rate at which
training proceeds, asymptotic levels of performance, and the number of items a
trained network misclassifies.

We used this model to explore two types of vowel inventory phenomena. The
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Figure 1: General structure of the models used in the present paper.

first relates to the preference of four-vowel languages to choose front mid vowels
over back mid vowels, which we propose is related to differences in these vowels’
variability. In the second set of simulations, we explore the interaction between the
number of vowel quality contrasts in a language, and its tendency to use contrastive
length. It is shown that both factors affect ease of learning and processing in the
model, providing an explanation for why certain inventories are preferred.

2 Experiment 1: Front-Back Asymmetries

The first set of simulations concerns the observation that, in four vowel languages,
there is a greater tendency for languages to use a front mid vowel than a back mid
vowel, as illustrated in Figure 2. This is an interesting asymmetry, given that the
dispersion characteristics of the two inventories are approximately equal. A simple
dispersion model as in Liljencrants & Lindblom (1972) predicts there to be little
difference in the occurrence of the two inventory types, but this is contradicted by
the empirical data.

vl u; V1 u;
1 1 \ 1
\“ l’l l“ "l
Y e ! ' O
~.a./ ~.a./
‘Type A’ ‘Type B’
10 languages 2 languages

Figure 2: Asymmetry of back vowels over front vowels. Note that the relative
dispersion of the two sets is roughly the same.

One explanation for this asymmetry derives from differences between front and
back vowels with respect to their tendency to vary in production. As Figure 3 illus-



trates, there is a difference between nonlow front and back vowels in their tendency
to overlap with each other. Speakers are able to produce the vowel /i/ with a better
degree of precision, by stiffening the genioglossus muscle and propping the tongue
laterally against the dental ridge (Beckman, Jung, Lee, de Jong, Krishnamurthy,
Ahalt, & Cohen 1995). This is not possible for back vowels however, which leads
to a greater F1 variability for /u/ than for /i/, causing more overlap for the /u/ - /o/
contrast than for the complementary /i/ — /e/ contrast.

This type of explanation is consistent with Stevens’ Quantal Theory (Stevens
1989), in which a phoneme’s distinctiveness is affected by nonlinearities in the
relationship between the vocal tract and acoustics: phonemes with quantal articu-
lations are those which can be produced with greater precision as a result of such
nonlinearities. In the present account, a vowel inventory’s frequency can be ex-
plained in part as the result of the overlap of its constituent vowels — inventories
which minimize this overlap have more discriminable vowels, and are more likely

to occur.
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Figure 3: Schematization of vowel variability. Note the greater tendency for non-
low back vowels to overlap, compared to their front counterparts.

Method & Stimuli

To test the hypothesis that production variability has an effect on vowel inventory
frequencies, we trained networks on the invented vocabularies of one of two pseu-
dolanguages. These pseudolanguages differed only with respect to their vowel in-
ventories: the artificial vocabularies consisted of all CV combinations of the con-
sonant set [p t k b d g] and either the vowel set [i e a u] (Language A)orfiaou]
(Language B). Training stimuli were devised by extracting CV syllables from the
DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus of spoken English.
Raw waveforms were transformed into fourteen 8 ms frames of 96 spectral coef-
ficients (bandwidth: 62.5 Hz, frequency range: 0-6000 Hz) using the Fast Fourier
transformation. The result was a set of 1,344 spectral coefficients for each CV
syllable in the training set.

Using waveforms drawn from the TIMIT database allowed us to obtain many
instances of each syllable type (in most cases, greater than 25 of each type) as
spoken by many speakers of both sexes and of many American regional dialects.
Although networks were not explicitly trained to identify vowels and consonants,
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the identification task at hand would force these networks to learn to identify the
consonant and vowel components of the input set in order to perform the task at
optimal levels. This is consistent with what we believe to occur in children as
they learn to identify the words in their target language. It is hypothesized that the
greater degree of overlap between nonlow back vowels compared to nonlow front
vowels will cause slower learning rates and poorer generalization in models trained
on Language B, compared to Language A.

Network training consisted of 100,000 training trials. During each training trial,
the model was presented with the spectral coefficients of a CV syllable randomly
drawn from the training set, and trained to identify this syllable by activating the
correct output unit. There were 24 output units, each corresponding to a different
CV syllable type. All types were presented an equal number of times over the
course of training.

Results and Discussion

Three different networks were trained on either Language A or B, for a total of six
networks; averaged results for all six are reported here. To assess overall learning
of training items, networks were tested at intervals of 10,000 training trials on the
complete training set. This was done by presenting all items to the network, and cal-
culating the resulting Sum Squared Error which is a function of the overall correct
and incorrect activation of all output units (Rumelhart, Hinton, & Williams 1986).
Results are plotted in Figure 4. Higher mean error rates for models trained on Lan-
guage B indicate that these networks had more difficulty learning the training set
consisting of the vowel set [i a 0 u] compared to those trained on [i e a u].

e ——

Mean SSE

= Lang A: More Attested
——- Lang B: Less Attested

10 20 30 40 50 [ 70 80 90 100

Training Trials (x 1000)

Figure 4: Sum Squared Error rates averaged over all networks trained on two
pseudolanguages. Lower rates for Language A suggest less difficulty in learning
the training set.

This result is consistent with the hypothesis that the learnability of a vowel



inventory affects its frequency of occurrence in the world’s languages. In addition,
these networks were capable of learning both pseudolanguages, consistent with the
observation that both inventories are attested, although with different frequencies.
Neither inventory is completely unlearnable within this architecture (unlike more
extreme cases investigated in Joanisse & Seidenberg (1997), such as [i I e € &]).
Given sufficient training, networks trained on either inventory can achieve near-
perfect performance in categorizing items in the training set.

To further investigate how these inventories differ in their degree of suitability,
we also tested networks on their ability to generalize to novel stimuli. This type of
testing is comparable to the type of task confronting an adult language user, who
must recognize novel tokens of familiar words in the course of everyday language
processing. This was done by presenting fully trained networks with instances of
CV syllables randomly withheld from the training set. Analyses of these errors
indicated that networks trained on Language B misclassified novel vowels more
frequently than Language A (Lang A: 71% correct; Lang. B: 65% correct).

Results from these simulations support the hypothesis that vowel systems are
functionally optimized in ways that maximize the discriminability of their con-
stituent vowels because of its effects on learning. In addition, these simulations
suggest that accounting for these phenomena turns on examining stimuli that real-
istically represent variability in terms of production and overlap.

3 Experiment 2: Length and Quality Interactions

So far we have only considered vowel inventory tendencies in terms of quality con-
trasts related to formant frequencies. However, many languages use other types of
cues to contrast vowels. Here we consider how one such cue, vowel length, inter-
acts with spectral (formant-based) cues. Maddieson observes that ‘The probability
of length being part of the vowel system increases with the number of vowel quality
contrasts’ (Maddieson 1984:129). As such, 12.5% of languages with 4 to 6 vowel
qualities and 24.7% of languages with 7-8 vowel qualities incorporate length con-
trasts, compared to 53.8% of languages with 10 or more vowel qualities. However,
these data are incomplete, owing to the nature of the Maddieson (1984) database
which does not consider contrastive length in cases where all vowel qualities par-
ticipate in length contrasts.

We propose that this pattern is not accidental, and that a more extensive survey
of length in vowel systems would reveal a similar pattern for languages not included
in the Maddieson database. This pattern is attributed to the weak contrastiveness
of durational cues for vowels, compared to spectral cues, owing to the degree of
variability intrinsic to vowel length. Vowel length appears to be a useful cue in dis-
ambiguating various language contexts, for example in determining the voicing of
an adjacent consonant (Chen 1970), rate of speech (Magen & Blumstein 1993) and
a lexical boundary (Davis, Marslen-Wilson, & Gaskell 1997). Given this tendency
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for vowels to vary in duration, it is plausible that adding a durational contrast would
be dispreferred.

This analysis is additionally supported by the observation that length contrasts
are often observed to accompany close quality contrasts (Maddieson 1984). This
suggests that duration is a useful secondary cue to differentiating spectrally similar
vowels, though on its own, it may prove to be less useful than a spectral contrast.

Connectionist models provide a way to explore these phenomena, because of
their capacity to exploit multiple, simultaneous, probabilistic regularities in the ser-
vice of learning to perform a task. The relative usefulness of cues can be assessed
in terms of the model’s ability to reliably learn and use them. In the present sim-
ulations, connectionist networks were trained to acquire vowel inventories that use
spectral or length contrasts to different degrees. It was predicted that differences
between network learning and generalization would reflect known facts about the
occurrence of these cues in vowel systems of different sizes.

Method & Stimuli

Networks were trained on one of three vowel inventories which use length and
spectral contrasts to different degrees. As Table 1 shows, these inventories seek
to double the number of contrasts in the familiar [i e a o u] set by adding spectral
contrasts, length contrasts, or both. For clarity, these inventories are also plotted in
Appendix A.

inventory vowel set
1 - quality only [iveezasouu]
2 - length [iiree:aaoo0:uu]

3 - both length and quality [i:ve:e®:a00:u u:]

Table 1: Vowel inventories used in the present study. All seek to double the base
[i e a 0 u] inventory, though in different ways.

Given the hypothesized differences in the contrastiveness of length and spectral
cues, we predicted that networks would have more difficulty learning Inventory 1
compared to 2 and 3, because only spectral contrasts are used, and that Inventory
3 would be easier to acquire than Inventory 2 due to the interaction of duration
and spectral cues in maintaining contrast in such a relatively large and crowded
inventory. This would be consistent with the observation that a contrast like /i/ —
/1 is dispreferred compared to /i/ — /e/, though it might be more common than /i/ —
/i:/. Ultimately, /i:/ — /I/ seems to represent a good compromise for languages with
a crowded vowel space.

The architecture of the model was similar to those used in the previous simu-
lations. Input consisted of 2040 spectral coefficients encoding the acoustic repre-
sentation of a vowel. A total of 40 vowels of each type were devised for training



purposes. Training sets consisted of synthetic vowels, made to be highly realis-
tic by using formant means and variances drawn from observed data in the TIMIT
database and data published in Beckman et al. (1995). Contrastive vowel length
was simulated by creating long vowels with a mean duration 1.66 times longer than
short vowels, and with a standard deviation of 0.5 for the long vowels, and 0.33
for the short vowels?. In this model, vowel length was implemented by varying the
number of non-empty frames presented to the input layer, such that longer vowels
had more “filled’ frames, and shorter vowels had more empty frames.

Model training proceeded similarly to the previous experiment, though in the
present simulations, the training task was simply to identify the vowel presented on
the input by activating the appropriate output node. There were 10 output nodes for
each network, each corresponding to a separate vowel identity; in cases where sim-
ilar vowel qualities were differentiated by contrastive length, separate output nodes
were used for the long and short versions of the two vowels. Three networks of
each type were trained for 250,000 training trials. To compensate for the relatively
simple nature of this task, 15 hidden units were used in each simulation.

Results

Sum Squared Error means are plotted in Figure 5. These results indicate that net-
works trained on Inventory 3 were learning the training set slightly better than those
trained on Inventory 2, and much better than those trained on Inventory 1. To fur-
ther assess model performance, fully trained networks were tested on a set of 10
novel vowels of each type. The mean percent of correctly generalized items was
62.3% for Inventory 1, 86.7% for Inventory 2, and 91% for Inventory 3.

09

o8 === Inv 1: Qual Only
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Figure 5: Mean Sum Squared Error rates for the three network types in this exper-
iment. Lower values indicate better performance.
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Summary

The present simulations support the hypothesis that contrastive vowel length repre-
sents a weaker cue than typical spectral differences for discriminating vowels, and
affects languages’ tendency to recruit contrasts which rely solely on length distinc-
tions. This explains the paucity of languages with smaller inventories (3-8 vowel
quality contrasts) that use vowel length distinctions. - And while frequency data is
missing for languages in which all vowel qualities participate in length contrasts,
these results predict that the facts should not be different for such languages. Fi-
nally, these results are consistent with observations that length contrasts tend to
accompany smaller quality contrasts (e.g. /i:/ —/I/).

4 Discussion

This work has explored the idea that the vowel inventory preferences of the world’s
languages result from their functional optimization. The simulations described here
demonstrate the utility of connectionist networks in exploring this type of hypoth-
esis. The performance of these models is easy to assess, and allows us to directly
compare results to empirical facts about the world’s languages. Here we have ex-
plored only a few of the possible uses of this approach. Additional applications
include testing the contrastiveness of other vowel cues, such as diphthongization
and nasality. This type of approach could also be useful in assessing the role of
discriminability in consonant inventory frequencies. For example languages’ pref-
erence of velar and alveolar stops over palatal stops might also be a function of
these phonemes’ discriminability.

The results of such simulations can serve to explain phonological patterns based
on articulatory, acoustic and computational constraints. The network discovers con-
straints in the course of learning to perform a task. In contrast to other approaches
such as Optimality Theory (Prince & Smolensky 1997), constraints do not have to
be specified in advance; they emerge in the course of acquisition given the nature
of the architecture, the characteristics of the input, and the task being performed.

Notes
1 Address correspondence to Marc Joanisse, USC Neuroscience Program, Uni-
versity Park, Los Angeles CA 90089-2520 (email: marcj@gizmo.usc.edu).

2See chapter 8 of Maddieson (1984) for an overview of facts concerning vowel
inventories.

3See Elman, Bates, Johnson, Karmiloff-Smith, Parisi, & Plunkett (1996) for a
discussion of how connectionist models work.



“4Variabilities are estimates drawn from recordings of Finnish speakers, where
lengths of vowels spoken in similar consonantal contexts — but differing prosodic
contexts — were measured and compared. They represent a best guess at durational
contrast and variability for a language with reliable length contrast, although lan-
guages will tend to vary along these parameters.
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Appendix 1: Inventories used in Experiment 2

Fmsmmmmmm e, 4
' i) “(:):' [ u/
\‘ ’I \‘ 1 LY ll
I \ 1
\‘ C() O(Z),’ \‘ e 0'1
\ / \ e c/
A ’ A) Q
\\ K \\ ae K
. a(:)', ANy %
Inv. 1) Inv. 2)
Lttt )
v uy
Y I v !
1 1
\e: o
\ e c /)
A U
N\ ae: ’
\‘ . a ’



